题目内容

(本小题满分12分)
在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(–4,0),平行四边形OABC的顶点AB在抛物线上,AB与y轴交于点M,已知点Q(xy)在抛物线上,点P(t,0)在x轴上.

(1) 写出点M的坐标;
(2) 当四边形CMQP是以MQPC为腰的梯形时.
① 求t关于x的函数解析式和自变量x的取值范围;
② 当梯形CMQP的两底的长度之比为1:2时,求t的值.


(1)M (0,2)
(2)①t = –+ x –2
–8.

解析(1) ∵OABC是平行四边形,∴AB∥OC,且AB =" OC" = 4,
∵A,B在抛物线上,y轴是抛物线的对称轴,
∴ A,B的横坐标分别是2和– 2,
代入y =+1得, A(2, 2 ),B(– 2,2),
∴M (0,2),                                            ---2分
(2) ① 过点Q作QH ^ x轴,设垂足为H, 则HQ =" y" ,HP =" x–t" ,
由△HQP∽△OMC,得:, 即: t =" x" – 2y ,
∵ Q(x,y) 在y = +1上,
∴ t = –+ x –2.                        ---2分
当点P与点C重合时,梯形不存在,此时,t =" –" 4,解得x = 1±,
当Q与B或A重合时,四边形为平行四边形,此时,x = ± 2
∴x的取值范围是x ¹ 1±,
且x¹± 2的所有实数.                         ---2分
② 分两种情况讨论:
1)当CM > PQ时,则点P在线段OC上,                                                            
∵ CM∥PQ,CM =" 2PQ" ,
∴点M纵坐标为点Q纵坐标的2倍,即2 = 2(+1),解得x =" 0" ,
∴t = –+ 0 –2
=" –2 " .                                             --- 2分
2)当CM < PQ时,则点P在OC的延长线上,
∵CM∥PQ,CM = PQ,
∴点Q纵坐标为点M纵坐标的2倍,即+1=2´2,解得: x = ±.     ---2分                                                 
当x = –时,得t = ––2 =" –8" –,                       
当x =时,
得t =–8.                                  ---2分 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网