题目内容
【题目】如图,已知直线y=3x﹣3分别交x轴,y轴于A,B两点,抛物线y=x2+bx+c经过A,B两点,点C是抛物线与x轴的另一个交点(与A点不重合)
(1)求抛物线的解析式:
(2)在抛物线的对称轴上是否存在点M,使△ABM周长最短?若存在,求出点M的坐标;若不存在,请说明理由.
【答案】(1)y=x2+2x﹣3(2)存在点M使△ABM周长最短,其坐标为(﹣1,﹣2)
【解析】
(1)由直线解析式可求得A、B两点的坐标,根据待定系数法可求得抛物线解析式;
(2)连接BC交对称轴于点M,由题意可知A、C关于对称轴对称,则可知MA=MC,故当B、M、C三点在同一条直线上时MA+MB最小,则△ABM的周长最小,由B、C坐标可求得直线BC的解析式,则可求得M点的坐标.
(1)在y=3x3中,令y=0求得x=1,令x=0可得y=3,
∴A(1,0),B(0,3),
把A.B两点的坐标分别代入y=x2+bx+c得:
解得
∴抛物线解析式为
(2)∵
∴抛物线的对称轴为x=1,
∵A、C关于对称轴对称,且A(1,0),
∴MA=MC,C(3,0),
∴MB+MA=MB+MC,
∴当B.M、C三点在同一条直线上时MB+MC最小,此时△ABM的周长最小,
∴连接BC交对称轴于点M,则M即为满足条件的点,
设直线BC的解析式为y=kx+m,
∵直线BC过点B(0,3),C(3,0),
∴
解得:
∴直线BC的解析式y=x3,
当x=1时,y=2,
∴M(1,2),
∴存在点M使△ABM周长最短,其坐标为(1,2).
【题目】为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表
组别 | 分组(单位:元) | 人数 |
A | 0≤x<30 | 4 |
B | 30≤x<60 | 16 |
C | 60≤x<90 | a |
D | 90≤x<120 | b |
E | x≥120 | 2 |
请根据以上图表,解答下列问题:
(1)填空:这次被调查的同学共有__人,a+b=__,m=___;
(2)求扇形统计图中扇形C的圆心角度数;
(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.
【题目】问题探究:小明根据学习函数的经验,对函数的图象与性质进行了探究.
下面是小明的探究过程,请你解决相关问题:
在函数中,自变量x可以是任意实数;
如表y与x的几组对应值:
X | 0 | 1 | 2 | 3 | 4 | ||||||
Y | 0 | 1 | 2 | 3 | 2 | 1 | a |
______;
若,为该函数图象上不同的两点,则______;
如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象:
该函数有______填“最大值”或“最小值”;并写出这个值为______;
求出函数图象与坐标轴在第二象限内所围成的图形的面积;
观察函数的图象,写出该图象的两条性质.