题目内容
【题目】如下图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),点B2019的坐标为_____
【答案】(6058,0)
【解析】
首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差6个单位长度,根据这个规律可以求得B2019的坐标.
解:∵A(,0),B(0,2),
∴Rt△AOB中,AB=,
∴OA+AB1+B1C2=+2+=6,
∴B2的横坐标为:6,且B2C2=2,即B2(6,2),
∴B4的横坐标为:2×6=12,
∴点B2019的横坐标为:2018÷2×6++=6058,点B2019的纵坐标为:0,
即B2019的坐标是(6058,0).
故答案为:(6058,0).
练习册系列答案
相关题目