题目内容

【题目】如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.

(1)求证:△ABD∽△AEB;

(2)当 = 时,求tanE;

(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.

【答案】(1)证明见解析;(2);(3).

【解析】

(1)要证明△ABD∽△AEB,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可;(2)由于AB:BC=4:3,可设AB=4,BC=3,求出AC的值,再利用(1)中结论可得AB2=ADAE,进而求出AE的值,所以tanE=;(3)设AB=4x,BC=3x,由于已知AF的值,构造直角三角形后利用勾股定理列方程求出x的值,即可知道半径3x的值.

(1)证明:∵∠ABC=90°,

∴∠ABD=90°﹣∠DBC,

由题意知:DE是直径,

∴∠DBE=90°,

∴∠E=90°﹣∠BDE,

∵BC=CD,

∴∠DBC=∠BDE,

∴∠ABD=∠E,

∵∠A=∠A,

∴△ABD∽△AEB;

(2)解:∵AB:BC=4:3,

∴设AB=4,BC=3,

∴AC= =5,

∵BC=CD=3,

∴AD=AC﹣CD=5﹣3=2,

由(1)可知:△ABD∽△AEB,

∴AB2=ADAE,

∴42=2AE,

∴AE=8,

在Rt△DBE中

tanE= = =

(3)过点F作FM⊥AE于点M,

∵AB:BC=4:3,

∴设AB=4x,BC=3x,

∴由(2)可知;AE=8x,AD=2x,

∴DE=AE﹣AD=6x,

∵AF平分∠BAC,

∵tanE=

∴cosE= ,sinE=

∴BE=

∴EF= BE=

∴sinE= =

∴MF=

∵tanE=

∴ME=2MF=

∴AM=AE﹣ME=

∵AF2=AM2+MF2

∴4= +

∴x=

∴⊙C的半径为:3x=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网