题目内容
的算术平方根是( )
A. 3 B. -3 C. 9 D.
如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象相交于A(2,),B(-1,1)两点.
(1)分别求出反比例函数和一次函数的解析式;
(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值?
【答案】(1)y=,y=x-;(2)当x>2或-1<x<0时,一次函数值大于反比例函数值.
【解析】(1)根据题意,将A、B两点的坐标代入y=kx+b(k≠0)与y=,即可得出解析式;
(2)求出一次函数图象在反比例函数图象的上方时,x的取值范围即可.
(1)∵反比例函数y=(m≠0)的图象经过点,
∴,
∴m=1,
∴反比例函数的解析式为y=,
∵一次函数y=kx+b(k≠0)的图象经过点A和点B(-1,-1),
∴,解得,
∴一次函数的解析式为y=x-;
(2)由图象,知当x>2或-1<x<0时,一次函数值大于反比例函数值.
【点睛】本题考查了一次函数和反比例函数的交点问题,熟练掌握待定系数法是解题的关键.
【题型】解答题【结束】24
如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.
(1)求证: ~△ADB;
(2) 求的值;
(3)延长BC至F,连接FD,使的面积等于,求证:DF与⊙O相切。
如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是( )
A. 32° B. 64° C. 77° D. 87°
在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是________.
如图所示,下列判断正确的是( )
A. 图⑴中∠1和∠2是一组对顶角 B. 图⑵中∠1和∠2是一组对顶角
C. 图⑶中∠1和∠2是一对邻补角 D. 图⑷中∠1和∠2互为邻补角
如图,EB∥DC,∠C=∠E,请写出理由说明∠A=∠ADE.
下列说法正确的是( )
A. 5是25的平方根 B. 25的平方根是5
C. 是的算术平方根 D. 是125的立方根
为了“绿色出行”, 王经理上班出行由自驾车改为乘坐地铁出行,已知他家距上班地点21千米,他用地铁方式平均每小时出行的路程,比用自驾车平均每小时行驶的路程的2倍还多5千米,他从家出发到达上班地点,地铁出行所用时间是自驾车方式所用时间的求王经理地铁出行方式上班的平均速度.
如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为( )
A. B. 2 C. 3 D. 4