题目内容

【题目】四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E,F.

(1)求证:△ADE≌△CBF;
(2)若AC与BD相交于点O,求证:AO=CO.

【答案】
(1)证明:∵BE=DF,

∴BE﹣EF=DF﹣EF,

即BF=DE,

∵AE⊥BD,CF⊥BD,

∴∠AED=∠CFB=90°,

在Rt△ADE与Rt△CBF中,

∴Rt△ADE≌Rt△CBF


(2)证明:如图,连接AC交BD于O,

∵Rt△ADE≌Rt△CBF,

∴∠ADE=∠CBF,

∴AD∥BC,

∴四边形ABCD是平行四边形,

∴AO=CO.


【解析】(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网