题目内容
【题目】等边三角形ABC的边长为6,在AC,BC边上各取一点E、F,连接AF,BE相交于点P,若AE=CF,则∠APB=______.
【答案】120°
【解析】
由已知条件先证△ABE≌△CAF,由此可得∠ABE=∠CAF,从而可得∠BPF=∠ABE+∠BAF=∠CAF+∠BAF=∠BAC=60°,由此即可得出∠APB=180°-60°=120°.
∵△ABC是等边三角形,
∴∠BAC=∠ABC=∠BCA=60°,AB=CA,
∵在△ABE和△CAF中:,
∴△ABE≌△CAF(SAS),
∴∠ABE=∠CAF,
∴∠BPF=∠ABE+∠BAP=∠CAF+∠BAP=∠BAC=60°,
∴∠APB=180°-60°=120°.
故答案为:120°.
练习册系列答案
相关题目
【题目】为了美化校园环境,争创绿色学校,某县教育局委托园林公司对A,B两校进行校园绿化,已知A校有如图的阴影部分空地需铺设草坪,B校有如图的阴影部分空地需铺设草坪,在甲、乙两地分别有同种草皮3500米和2500米出售,且售价一样,若园林公司向甲、乙两地购买草皮,其路程和运费单价表如下:
路程、运费单价表
A校 | B校 | |||
路程千米 | 运费单价元 | 路程千米 | 运费单价元 | |
甲地 | 20 | 10 | ||
乙地 | 15 | 20 |
注:运费单价表示每平方米草皮运送1千米所需的人民币
求:分别求出图1、图2的阴影部分面积;
若园林公司将甲地的草皮全部运往A校,请你求出园林公司运送草皮去A、B两校的总运费;
请你给出一种运送方案,使得园林公司支付出送草皮的总运费不超过15000元.