题目内容
关于的方程有两个不相等的实数根,则的取值范围是 .
【解析】根据题意得>0,解得.
已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x2.
(1)求k的取值范围.
(2)是否存在实数k,使方程的两实数根互为相
反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0
∴k<
∴k<时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则
x1+x2==0
解得k=.检验知,k=是=0的解.
所以,当k=时,方程的两个实数根x1与x2互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,并直接写出正确的答案.
函数的图像,如图所示,那么关于x的方程是的根的情况是
[ ]