题目内容

如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.
(1)求加固后坝底增加的宽度AF的长;
(2)求完成这项工程需要土石多少立方米?

解:(1)分别过点E、D作EG⊥AB、DH⊥AB交AB于G、H,

∵四边形ABCD是梯形,且AB∥CD,
∴DH平行且等于EG,
故四边形EGHD是矩形,
∴ED=GH,
在Rt△ADH中,AH=DH÷tan∠DAH=8÷tan45°=8(米),
在Rt△FGE中,i=1:2=
∴FG=2EG=16(米),
∴AF=FG+GH-AH=16+2-8=10(米);

(2)加宽部分的体积V=S梯形AFED×坝长=×(2+10)×8×400=19200(立方米).
答:(1)加固后坝底增加的宽度AF为10米;(2)完成这项工程需要土石19200立方米.
分析:(1)分别过E、D作AB的垂线,设垂足为G、H.在Rt△EFG中,根据坡面的铅直高度(即坝高)及坡比,即可求出FG的长,同理可在Rt△ADH中求出AH的长;由AF=FG+GH-AH求出AF的长.
(2)已知了梯形AFED的上下底和高,易求得其面积.梯形AFED的面积乘以坝长即为所需的土石的体积.
点评:本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网