题目内容
【题目】在一个不透明的口袋里装有四个小球,球面上分别标有数字﹣2、0、1、2,它们除数字不同外没有任何区别,每次实验先搅拌均匀.
(1)从中任取一球,求抽取的数字为负数的概率;
(2)从中任取一球,将球上的数字记为x(不放回);再任取一球,将球上的数字记为y,试用画树状图(或列表法)表示所有可能出现的结果,并求“x+y>0”的概率.
【答案】(1)(2)
【解析】
(1)直接根据概率公式求解即可;
(2)先利用树状图展示12种等可能的结果数,再得到x+y>0的所有可能的数目,即可求出其概率.
(1)根据题意得:抽取的数字为负的情况有1个,则P(数字为负数)= ;
(2)列表如下:
﹣2 | 0 | 1 | 2 | |
﹣2 | ﹣﹣﹣ | ﹣2 | ﹣1 | 0 |
0 | ﹣2 | ﹣﹣﹣ | 1 | 2 |
1 | ﹣1 | 1 | ﹣﹣﹣ | 3 |
2 | 0 | 2 | 3 | ﹣﹣﹣ |
由列表可知,所有等可能的结果有12种,其中“x+y>0”的结果有6种,则P(x+y>0)= .
练习册系列答案
相关题目