题目内容

(2006•南充)如图,PAB,PCD是⊙O的两条割线,AB是⊙O的直径,AC∥OD.
(1)求证:CD=______;(先填后证)
(2)若,试求的值.

【答案】分析:(1)由于AC∥OD,OA=OD,故∠1=∠2,∠2=∠3.即∠1=∠3,则=,CD=BD;
(2)由于AC∥OD,故=,由于=,CD=BD,故=,因为AB=2AO,所以=,又因为AB是⊙O的直径,所以∠ADB=90°,AD2+BD2=AB2,由=,设AB=5k,BD=3k,AD=4k,代入代数式即可求解.
解答:解:(1)求证:CD=BD,
证明:∵AC∥OD,
∴∠1=∠2.
∵OA=OD,
∴∠2=∠3.
∴∠1=∠3.
=
∴CD=BD.

(2)∵AC∥OD,
=
=,CD=BD,
=
∵AB=2AO,
=
∵AB是⊙O的直径,
∴∠ADB=90°.
∴AD2+BD2=AB2
=,设AB=5k,BD=3k,
∴AD=4k.
=
点评:本题考查的是平行线的性质及圆周角定理,等腰三角形的,比较复杂,是一道具有综合性的题目.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网