题目内容
如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
一个圆柱的侧面展开图是一个长为,宽为的长方形,则这个圆柱的表面积为________.取
我们知道1+2+3+…+=,则1+2+3+…+10= ___________ .
[问题提出] 那么 的结果等于多少呢?
[阅读理解] 在图1所示的三角形数阵中,第1行圆圈中的数为1,即12 ;第2行两个圆圈中数的和为2+2,即22;......;第n行n个圆圈中数的和为n+n+n即 n2;这样,该三角形数阵中共有____ 个圆圈,所有圆圈中数的和可表示为_________________ .
图1
[规律探究] 将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n-1行的第一个圆圈中的数分别为n-1,2,n)发现每个位置上三个圆圈中的数的和均为______________.由此可得,这三个三角形数阵所有圆圈中数的总和为:
3( )=_________________.因此, =__________.
图2
[问题解决]
(1).根据以上规律可得 __________________.
(2).试计算 ,请写出计算步骤.
如果|a|=3,|b|=2且a>b,那么a+b的值是( ).
A. 4 B. 2 C. -4 D. 5或
如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交AC于点D,动点P在抛物线对称轴上,动点Q在抛物线上.
(1)求抛物线的解析式;
(2)当PO+PC的值最小时,求点P的坐标;
(3)是否存在以A,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出P,Q的坐标;若不存在,请说明理由.
王英同学从A地沿北偏西60°方向走100米到B地,再从B地向正南方向走200米到C地,此时王英同学离A地的距离是_____米.
为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:﹣6,﹣3,x,2,﹣1,3.若这组数据的中位数是﹣1,则下列结论错误的是( )
A. 方差是8 B. 极差是9 C. 众数是﹣1 D. 平均数是﹣1
将数字130344900精确到万位取近似数用科学记数法表示______________________.
一个不透明的口袋中装有个分别标有数字,,,的小球,它们的形状、大小完全相同.先从口袋中随机摸出一个小球,记下数字为;再在剩下的个小球中随机摸出一个小球,记下数字为,得到点的坐标.
请用“列表”或“画树状图”等方法表示出点所有可能的结果;
求出点在第一象限或第三象限的概率.