题目内容

如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是


  1. A.
  2. B.
  3. C.
  4. D.
C
分析:连接OB、OC、OA,求出∠BOC的度数,求出AB、AC的长,求出四边形OBAC和扇形OBC的面积,即可求出答案.
解答:解:连接OB、OC、OA,
∵圆O切AM于B,切AN于C,
∴∠OBA=∠OCA=90°,OB=OC=r,AB=AC
∴∠BOC=360°-90°-90°-α=(180-α)°,
∵AO平分∠MAN,
∴∠BAO=∠CAO=α,
AB=AC=
∴阴影部分的面积是:S四边形BACO-S扇形OBC=2×××r-=(-)r2
∵r>0,
∴S与r之间是二次函数关系.
故选C.
点评:本题主要考查对切线的性质,切线长定理,三角形和扇形的面积,锐角三角函数的定义,四边形的内角和定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网