题目内容

【题目】如图,在四边形ABCD中,已知AB=4cm,BC=3cm,AD=12cm,DC=13cm,∠B=90°,求四边形ABCD的面积。

【答案】解:连接AC,

∵∠B=90°
∴AC2=AB2+BC2=16+9=25
∵AD2=144,DC2=169
∴AC2+AD2=DC2
∴CA⊥AD
∴S四ABCD=SABC+SACD=×3×4+×12×5=36cm
【解析】连接AC,先根据直角三角形的性质得到AC边的长度,再根据三角形ACD中的三边关系可判定△ACD是Rt△,把四边形分成两个直角三角形即可求得面积.

【考点精析】本题主要考查了勾股定理的逆定理的相关知识点,需要掌握如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网