题目内容
阅读下面的解题过程:
已知,求的值。
【解析】由知≠0,所以
∴,故的值为
评注:该题的解法叫做“倒数法”,请你利用“倒数法”解下面的题目
东门天虹商场购进一批“童乐”牌玩具,每件成本价30元,每件玩具销售单价x(元)与每天的销售量y(件)的关系如下表:
若每天的销售量y(件)是销售单价x(元)的一次函数
(1)求y与x的函数关系式;
(2)设东门天虹商场销售“童乐”牌儿童玩具每天获得的利润为w(元),当销售单价x为何值时,每天可获得最大利润?此时最大利润是多少?
(3)若东门天虹商场销售“童乐”牌玩具每天获得的利润最多不超过15000元,最低不低于12000元,那么商场该如何确定“童乐”牌玩具的销售单价的波动范围?请你直接给出销售单价x的范围。
如图,在⊙O中,∠ABC=50°,则∠AOC等于( )
A. 50° B. 80° C. 90° D. 100°
方程的两个根是: ,.
把抛物线先向右平移3个单位长度,再向下平移5个单位长度后,所得函数的表达式为( )
A. B.
C. D.
已知,则的值为___________
下列分式中是最简分式的是( )
A. B. C. D.
若x=2是方程的解,则a=____.
在平面直角坐标系xOy中,已知点A在抛物线y=x2+bx+c(b>0)上,且A(1,-1),
(1)若b-c=4,求b,c的值;
(2)若该抛物线与y轴交于点B,其对称轴与x轴交于点C,则命题“对于任意的一个k(0<k<1),都存在b,使得OC=k·OB.”是否正确?若正确,请证明;若不正确,请举反例;
(3)将该抛物线平移,平移后的抛物线仍经过(1,-1),点A的对应点A1为
(1-m,2b-1).当m≥-时,求平移后抛物线的顶点所能达到的最高点的坐标.