题目内容
【题目】如图,在梯形ABCD中,AD∥BC,AD=6cm,CD=4cm,BC=BD=10cm,点P由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交BD于Q,连接PE,若设运动时间为t(s)(0<t<5),解答下列问题:
(1)当t为何值时,PE∥AB;
(2)设△PEQ的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使?若存在,求出此时t的值;若不存在,说明理由;
(4)连接PF,在上述运动过程中,五边形PFCDE的面积是否发生变化?说明理由
【答案】(1);(2);(3)1或4;(4)不会发生变化,理由见解析.
【解析】试题分析:(1)若要PE∥AB,则应有DE:DA=DP:DB,故用t表示DE和DP后,代入上式求得t的值;
(2)过B作BM⊥CD,交CD于M,过P作PN⊥EF,交EF于N.由题意知,四边形CDEF是平行四边形,可证得△DEQ∽△BCD,得到DE:BC=EQ:CD,求得EQ的值,再由△PNQ∽△BMD,得到PQ:BD=PN:BM,求得PN的值,利用S△PEQ=EQPN得到y与t之间的函数关系式;
(3)利用建立方程,求得t的值;
(4)易得△PDE≌△FBP,故有S五边形PFCDE=S△PDE+S四边形PFCD=S△FBP+S四边形PFCD=S△BCD,即五边形的面积不变.
解:(1)当PE∥AB时,
∴DE:DA=DP:DB.
而DE=t,DP=10t,
∴t:6=(10t):10,
∴t=,
∴当t= (s),PE∥AB.
(2)∵线段EF由DC出发沿DA方向匀速运动,
∴EF平行且等于CD,
∴四边形CDEF是平行四边形。
∴∠DEQ=∠C,∠DQE=∠BDC.
∵BC=BD=10,
∴△DEQ∽△BCD.
∴DE:BC=EQ:CD.
t:10=EQ:4.
∴EQ=t.
过B作BM⊥CD,交CD于M,过P作PN⊥EF,交EF于N,
∵BC=BD,BM⊥CD,CD=4cm,
∴CM=CD=2cm,
∴BM=cm,
∵EF∥CD,
∴∠BQF=∠BDC,∠BFG=∠BCD,
又∵BD=BC,
∴∠BDC=∠BCD,
∴∠BQF=∠BFG,
∵ED∥BC,
∴∠DEQ=∠QFB,>
又∵∠EQD=∠BQF,
∴∠DEQ=∠DQE,
∴DE=DQ,
∴ED=DQ=BP=t,
∴PQ=102t.
又∵△PNQ∽△BMD,
∴PQ:BD=PN:BM.
∴(102t):10=PN: .
∴PN= (1).
∴S△PEQ=EQPN=×× (1) .
(3)S△BCD=CDBM=×4×=
若S△PEQ=S△BCD,
则有 ,
解得t1=1,t2=4.
(4)在△PDE和△FBP中,
∵DE=BP=t,PD=BF=10t,∠PDE=∠FBP,
∴△PDE≌△FBP(SAS).
∴S五边形PFCDE=S△PDE+S四边形PFCD=S△FBP+S四边形PFCD=S△BCD=.
∴在运动过程中,五边形PFCDE的面积不变.