题目内容

【题目】如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(﹣1,0)及点B.

(1)求二次函数与一次函数的解析式;

(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.

【答案】(1)抛物线解析式为y=x2+4x+3,一次函数解析式为y=﹣x﹣1(2)由图象可知,满足(x+2)2+m≥kx+b的x的取值范围为x﹣4或x≥﹣1.

【解析】(1)先利用待定系数法先求出m,再求出点B坐标,利用方程组求出太阳还是解析式.

(2)根据二次函数的图象在一次函数的图象上面即可写出自变量x的取值范围.

解:(1)∵抛物线y=(x+2)2+m经过点A(﹣1,0),∴0=1+m,∴m=﹣1,∴抛物线解析式为y=(x+2)2﹣1=x2+4x+3,∴点C坐标(0,3),∵对称轴x=﹣2,B、C关于对称轴对称,∴点B坐标(﹣4,3),∵y=kx+b经过点A、B,

,解得

∴一次函数解析式为y=﹣x﹣1,

(2)由图象可知,写出满足(x+2)2+m≥kx+b的x的取值范围为x<﹣4或x>﹣1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网