题目内容
【题目】抛物线y=a(x-1)2+k与x轴两个交点间的距离为2,将抛物线y=a(x-1)2+k向上平移n个单位,平移后的抛物线经过点(m,n),则m的值是______.
【答案】0或2
【解析】
利用二次函数图象上点的坐标特征可求出抛物线与x轴交点的横坐标,由两个交点间的距离为2可求出k=-a,进而可得出x1,x2的值,再由二次函数图象的变换及二次函数图象上点的坐标特征可求出m的值,此题得解.
解:当y=0时,a(x-1)2+k=0,
解得:x1=1-,x2=1+,
∴1+-(1-)=2=2,
∴k=-a,
∴x1=0,x2=2.
∵将抛物线y=a(x-1)2+k向上平移n个单位,平移后的抛物线经过点(m,n),
∴m=x1=0或m=x2=2.
故答案为:0或2.
练习册系列答案
相关题目
【题目】某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为A、B、C、D、E,由调查所得数据绘制了如图所示的不完整的统计图表.
类别 | 频率 |
A | m |
B | 0.35 |
C | 0.20 |
D | n |
E | 0.05 |
(1)求本次调查的小型汽车数量及m,n的值;
(2)补全频数分布直方图;
(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.