题目内容
已知,实数a,b在数轴上对应点的位置如图所示,化简b-(b-a)2 |
分析:先根据数轴确定a、b的取值范围,从而确定b-a与0的关系,再计算二次根式,最后去括号、合并同类项即可.
解答:解:如右图所示,
∵a<0,b>0,且|a|>|b|,
∴b-a>0,
∴b-
=b-(b-a)=b-b+a=a.
故答案是a.
∵a<0,b>0,且|a|>|b|,
∴b-a>0,
∴b-
(b-a)2 |
故答案是a.
点评:本题考查了实数与数轴、二次根式的性质与化简,解题的关键是根据数轴先判断a、b的取值范围.
练习册系列答案
相关题目