题目内容
用配方法解方程2x2+4x+1=0,配方后的方程是
- A.(2x+2)2=-2
- B.(2x+2)2=-3
- C.(x+)2=
- D.(x+1)2=
D
分析:首先把二次项系数化为1,然后进行移项,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.
解答:∵2x2+4x+1=0,
?2x2+4x=-1,
∴x2+2x=-,
?x2+2x+1=-+1,
∴(x+1)2=.
故选D.
点评:此题考查配方法的一般步骤:
①把常数项移到等号的右边;
②把二次项的系数化为1;
③等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
分析:首先把二次项系数化为1,然后进行移项,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.
解答:∵2x2+4x+1=0,
?2x2+4x=-1,
∴x2+2x=-,
?x2+2x+1=-+1,
∴(x+1)2=.
故选D.
点评:此题考查配方法的一般步骤:
①把常数项移到等号的右边;
②把二次项的系数化为1;
③等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
练习册系列答案
相关题目
用配方法解方程2x2-x-1=0,变形结果正确的是( )
A、(x-
| ||||
B、(x-
| ||||
C、(x-
| ||||
D、(x-
|