题目内容
计算:
如图所示,已知AB//DE,AB=DE,AF=DC,请问图中有哪几对全等三角形?并任选其中一对给予证明.
为了更好地治理小凌河水质,保护环境,市治污公司决定购买10台污水处理设备,现有A 、B两种设备,A 、B单价分别为a万元/台、 b万元/台,月处理污水分别为240吨/月、200吨/月,经调查,买一台A型设备比买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.
(1)求a、b的值.
(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?
(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案.
如图,已知AB、CD、EF互相平行,且∠ABE =70°,∠ECD = 150°,则∠BEC是( )
A. 30° B. 40° C. 50° D. 60°
以四边形ABCD的边AB、AD为底边分别作等腰三角形ABE 和等腰三角形ADF.
(1)当四边形ABCD为正方形时(如图①),以边AB、AD为斜边分别向外侧作等腰直角△ABE和等腰直角△ADF,连接BF、ED,线段BF和ED的数量关系是_____________;
(2)当四边形ABCD为矩形时(如图②),以边AB、AD为斜边分别向矩形内侧、外侧作等腰直角△ABE和等腰直角△ADF,连接EF、BD,线段EF和BD具有怎样的数量关系?请说明理由;
(3)当四边形ABCD为平行四边形时,以边AB、AD为底边分别向平行四边形内侧、外侧作等腰△ABE和等腰△ADF,且△ABE和△ADF的顶角均为 ,连接EF、BD,交点为G.请用表示出∠FGD,并说明理由.
分解因式:=_________________;
计算: 的结果是( )
A. 1 B. C. D.
如图,点A的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B、C,连接AC,如果∠ACD=90°,则n的值为_____.
已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.
(1)求证:△ABM≌△DCM
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD:AB=____________时,四边形MENF是正方形(只写结论,不需证明)