题目内容
【题目】如图,已知矩形ABCD,AB=6,BC=8,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为( )
A.
B.
C.
D.
【答案】C
【解析】解:延长AF交DC于Q点,如图所示:
∵E,F分别是AB,BC的中点,
∴AE= AB=3,BF=CF= BC=4,
∵四边形ABCD是矩形,
∴CD=AB=6,AB∥CD,AD∥BC,
∴ =1,△AEI∽△QDE,
∴CQ=AB=CD=6,△AEI的面积:△QDI的面积=3:12=1:4,
∵AD=8,
∴△AEI中AE边上的高= ,
∴△AEI的面积= ×3× = ,
∵△ABF的面积= ×4×6=12,
∵AD∥BC,
∴△BFH∽△DAH,
∴ = = ,
∴△BFH的面积= ×2×4=4,
∴四边形BEIH的面积=△ABF的面积﹣△AEI的面积﹣△BFH的面积=12﹣ ﹣4= .
所以答案是:C.
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
【题目】温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n件产品运往A,B,C三地销售,要求运往C地的件数是运往A地件数的2倍,各地的运费如图所示.设安排x件产品运往A地.
(1)当n=200时,①根据信息填表:
A地 | B地 | C地 | 合计 | |
产品件数(件) | x | 2x | 200 | |
运费(元) | 30x |
②若运往B地的件数不多于运往C地的件数,总运费不超过4000元,则有哪几种运输方案?
(2)若总运费为5800元,求n的最小值.