题目内容
钢笔每支18元,圆珠笔每只3元,n支钢笔和m支圆珠笔共____元.
问题探究
(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为 ;
(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;
问题解决
(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.
一个直角三角形绕其直角边旋转一周得到的几何体是________.
如图,在方格纸中,直线m与n相交于点C,
请过点A画直线AB,使,垂足为点B;
请过点A画直线AD,使;交直线n于点D;
若方格纸中每个小正方形的边长为1,求四边形ABCD的面积.
如图,在五边形ABCDE中,若∠D=110°,则∠1+∠2+∠3+∠4=____.
下列各组单项式中,同类项一组的是( )
A. 3x3y与3xy3 B. 2ab2与﹣3a2b
C. a2与b2 D. ﹣2xy与3yx
如图,方格纸中每个小正方形都是1,点P、A、B、C、D、E、F是方格纸中的格点(即小正方形的顶点).
在图①中,过点P画出AB的平行线和垂线;
在图②中,以线段AB、CD、EF的长为边长的三角形的面积等于_______.
如图,物体从A点出发,按照AB(第一步)C(第二步)DAEFGAB……的顺序循环运动,则第2018步到达()
A. A点 B. C点 C. E点 D. F点
观察下列等式:
第1个等式:;
第2个等式:;
第3个等式:;
第4个等式:;
…
请解答下列问题:
(1)按以上规律列出第5个等式:a5= = ;
(2)用含有n的代数式表示第n个等式:an= = (n为正整数);
(3)求a1+a2+a3+a4+…+a100的值.