题目内容

【题目】已知 中, .点 从点 出发沿线段 移动,同时点 从点 出发沿线段 的延长线移动,点 移动的速度相同, 与直线 相交于点 .
(1)如图①,当点 的中点时,求 的长;

(2)如图②,过点 作直线 的垂线,垂足为 ,当点 在移动的过程中,设 是否为常数?若是请求出 的值,若不是请说明理由.

(3)如图③,E为BC的中点,直线CH垂直于直线AD,垂足为点H,交AE的延长线于点M;直线BF垂直于直线AD,垂足为F;找出图中与BD相等的线段,并证明.

【答案】
(1)解:如图,过P点作PF∥AC交BC于F,

∵点P和点Q同时出发,且速度相同,

∴BP=CQ,

∵PF∥AQ,

∴∠PFB=∠ACB,∠DPF=∠CQD,

又∵AB=AC,

∴∠B=∠ACB,

∴∠B=∠PFB,

∴BP=PF,

∴PF=CQ,又∠PDF=∠QDC,

∴△PFD≌△QCD,

∴DF=CD= CF,

又因P是AB的中点,PF∥AQ,

∴F是BC的中点,即FC= BC=6,

∴CD= CF=3


(2)解: 为定值.

如图②,点P在线段AB上,过点P作PF∥AC交BC于F,

易知△PBF为等腰三角形,

∵PE⊥BF

∴BE= BF

∵易得△PFD≌△QCD

∴CD=


(3)解:BD=AM

证明:∵

∵E为BC的中点

,

∵AH⊥CM

(ASA)

即:


【解析】(1)根据已知可知BP=CQ,再根据PF∥AQ及AB=AC,证明∠B=∠PFB,得出BP=PF,证得PF=CQ,然后根据角角边证明△PFD≌△QCD,得出DF=CD=CF,根据已知P是AB的中点,PF∥AQ,证明点F是BC的中点,求出CF的长,即可求出CD的长。
(2)点P在线段AB上,过点P作PF∥AC交BC于F,先证明△PBF为等腰三角形,根据PE⊥BF,得出BE与线段BF的数量关系,再证明△PFD≌△QCD ,结合CD= C F,然后根据B E + C D =BC,即可得出结论。
(3)先根据勾股定理的逆定理证明ΔABC是等腰直角三角形, 再根据E为BC的中点,去证明AE=EC,∠EAD = ∠ECM,然后证明△AED≌△CEM,得出DE=ME,根据BD=DE+BE=AE+ME=AM。即可得出结论。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网