题目内容
解方程(组)
(1);(2)
解方程:
(用公式法)
在Rt△ABO中,∠AOB=90°,OA=,OB=4,分别以OA、OB边所在的直线建立平面直角坐标系,D为x轴正半轴上一点,以OD为一边在第一象限内作等边△ODE.
(1)如图①,当E点恰好落在线段AB上时,求E点坐标;
(2)在(Ⅰ)问的条件下,将△ODE沿x轴的正半轴向右平移得到△O′D′E′,O′E′、D′E′分别交AB于点G、F(如图②)求证OO′=E′F;
(3)若点D沿x轴正半轴向右移动,设点D到原点的距离为x,△ODE与△AOB重叠部分的面积为y,请直接写出y与x的函数关系式.
已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( )
A. 3cm2 B. 4cm2 C. 6cm2 D. 12cm2
教科书中这样写道:“我们把多项式a2+2ab+b2及a2-2ab+b2叫做完全平方式.”如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值、最小值等.
例如:分解因式x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);
例如求代数式2x2+4x-6的最小值,2x2+4x-6=2(x2+2x-3)=2(x+1)2-8,可知当时,有最小值,最小值是.
根据阅读材料用配方法解决下列问题:
(1)分解因式:m2-4m-5= .
(2)当a,b为何值时,多项式a2+b2-4+6b+18有最小值,并求出这个最小值.
(3)当a,b为何值时,多项式a2-2ab+2b2-2a-4b+27有最小值,并求出这个最小值.
若xm=3,xn=-2,则xm+2n=_____.
现有一列数:a1,a2,a3,a4,…,an-1,an(n为正整数),规定a1=2,a2- a1=4,,…,(n≥2),若,则n的值为( ).
A. 2015 B. 2016 C. 2017 D. 2018
某校允许学生在同个系列的校服里选择不同款式,新生入学后,学校就新生对校服款式选择情况作了抽样调查,调查分为款式A、B、C、D四种,每位新生只能选择一种款式,现将调查统计结果制成了如下两幅不完整的统计图,请结合这两幅统计图,回答下列问题:
(1)在本次调查中,一共抽取了多少名新生,并补全条形统计图;
(2)若该校有847名新生,服装厂已生产了270套B款式的校服,请你按相关统计知识判断是否还要继续生产B款式的校服?
下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是( )
A. B. C. D.