题目内容
【题目】如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为
A. B.3 C.1 D.
【答案】A
【解析】
首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可:
∵AB=3,AD=4,∴DC=3。∴根据勾股定理得AC=5。
根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E。
设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,
在Rt△AED′中:(AD′)2+(ED′)2=AE2,即22+x2=(4﹣x)2,
解得:x=。故选A。
练习册系列答案
相关题目
【题目】一股民上星期五买进某公司股票股,每股元,下表为本周内每日该股票的涨跌情况(单位:元)
星期 | 一 | 二 | 三 | 四 | 五 |
每股涨跌 |
星期三收盘时,每股是________元;
本周内每股最高价为________元,每股最低价为________元;
已知该股民买进股票时付了‰的手续费,卖出时还需付成交额‰的手续费和‰的交易锐,如果该股民在星期五收盘前将全部股票卖出,他的收益情况如何?