题目内容
【题目】如图:反比例函数的图象与一次函数的图象交于、两点,其中点坐标为.
(1)求反比例函数与一次函数的表达式;
(2)观察图象,直接写出当时,自变量的取值范围;
(3)一次函数的图象与轴交于点,点是反比例函数图象上的一个动点,若,求此时点的坐标.
【答案】(1),;(2)或;(3)(12,)或(-12,)
【解析】
(1)把A点坐标代入中求出k得到反比例函数解析式,把A点坐标代入中求出b得到一次函数解析式;
(2)由函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可;
(3)设P(x,),先利用一次解析式解析式确定C(0,1),再根据三角形面积公式得到,然后解绝对值方程得到x的值,从而得到P点坐标.
解:(1)把A(1,2)代入得k=2,
∴反比例函数解析式为,
把A(1,2)代入得,解得,
∴一次函数解析式为;
(2)由函数图象可得:当y1<y2时,-2<x<0或x>1;
(3)设P(x,),
当x=0时,,
∴C(0,1),
∵S△OCP=6,
∴,解得,
∴P(12,)或(-12,).
练习册系列答案
相关题目
【题目】某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:
销售方式 | 直接销售 | 粗加工后销售 | 精加工后销售 |
每吨获利/元 | 100 | 250 | 450 |
现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行)。
(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:
销售方式 | 全部直接销售 | 全部粗加工销售 | 尽量精加工,剩 余部分直接销售 |
获利/元 |
(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?
(3)如果要求蔬菜都要加工后销售,且公司获利不能少于42200元,问:至少将多少吨蔬菜进行精加工?