题目内容

【题目】如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.
(1)若∠A=50°,求∠CBD的度数;
(2)若AB=8,△CBD周长为13,求BC的长.

【答案】
(1)解:∵AB=AC,∠A=50°,

∴∠ABC=∠C=65°,

又∵DE垂直平分AB,

∴DA=DB,

∴∠ABD=∠A=50°,

∴∠DBC=15°


(2)解:∵DE垂直平分AB,

∴DA=DB,

∴DB+DC=DA+DC=AC,

又∵AB=AC=8,△CBD周长为13,

∴BC=5


【解析】(1)根据三角形内角和定理求出∠ABC=∠C=65°,根据线段垂直平分线的性质得到DA=DB,求出∠ABD的度数,计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可.
【考点精析】掌握线段垂直平分线的性质和等腰三角形的性质是解答本题的根本,需要知道垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;等腰三角形的两个底角相等(简称:等边对等角).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网