题目内容

19、工人师傅为了检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图1所示的工件槽,其中工件槽的两个底角均为90°,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图1所示的A,B,E三个接触点,该球的大小就符合要求.图2是过球心O及A,B,E三个接触点的截面示意图.已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD,BD⊥CD.请你结合图1中的数据,计算这种铁球的直径.
分析:连接OA、OE,设OE与AB交于点P.得到四边形ABDC是矩形,然后根据垂径定理得到PA=PB,PE=AC;然后根据已知条件利用勾股定理求出⊙O的半径OA的值,进而计算出这种铁球的直径.
解答:解:连接OA、OE,设OE与AB交于点P.如图
∵AC=BD,AC⊥CD,BD⊥CD
∴四边形ABDC是矩形
∵CD与⊙O切于点E,OE为⊙O的半径
∴OE⊥CD
∴OE⊥AB
∴PA=PB
∴PE=AC
∵AB=CD=16cm,∴PA=8cm,
∵AC=BD=PE=4cm,
在Rt△OAP中,由勾股定理得OA2=PA2+OP2
即OA2=82+(OA-4)2
∴解得OA=10cm,所以这种铁球的直径为20cm.
点评:本题考查了矩形的性质,垂径定理,以及勾股定理.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网