题目内容
如图,现有一横截面是一抛物线的水渠.一次,水渠管理员将一根长1.5m的标杆一端放在水渠底部的A点,另一端露出水面并靠在水渠边缘的B点,发现标杆有1m浸没在水中,露出水面部分的标杆与水面成30°的夹角(标杆与抛物线的横截面在同一平面内).(1)以水面所在直线为x轴,建立如图所示的直角坐标系,求该水渠横截面抛物线的解析式(结果保留根号);
(2)在(1)的条件下,求当水面再上升0.3m时的水面宽约为多少(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_ST/images1.png)
【答案】分析:(1)根据所建坐标系,设解析式为顶点式.因此需求顶点A的坐标和点B的坐标.设AB与x轴交于C点,可知AC=1m,BC=0.5m.作BD⊥x轴于点D.通过解Rt△AOC和Rt△BCD求点A、B的坐标.
(2)运用函数性质结合解方程求解.
解答:
解:(1)设AB与x轴交于C点,可知AC=1m,BC=0.5m.
作BD⊥x轴于点D.
则OA=0.5m,OC=
m,
BD=
m,CD=
m,
故A(0,-
);
B(
,
).
设抛物线的解析式为y=ax2-
.
将点B的坐标代入得a=
,
因而y=
x2-
.
(2)当水面上升0.3m时,
此时y=0.3,代入可得
=0.3,
解得x=±
.
故此时水面宽为
,约为2.6m.
点评:将实际问题转化为数学题体现了数学建模的思想,是解决实际问题的常用有效手段.如何建模需认真斟酌.
(2)运用函数性质结合解方程求解.
解答:
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/images0.png)
作BD⊥x轴于点D.
则OA=0.5m,OC=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/0.png)
BD=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/2.png)
故A(0,-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/3.png)
B(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/5.png)
设抛物线的解析式为y=ax2-
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/6.png)
将点B的坐标代入得a=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/7.png)
因而y=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/9.png)
(2)当水面上升0.3m时,
此时y=0.3,代入可得
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/10.png)
解得x=±
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/11.png)
故此时水面宽为
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211105516772375178/SYS201312111055167723751002_DA/12.png)
点评:将实际问题转化为数学题体现了数学建模的思想,是解决实际问题的常用有效手段.如何建模需认真斟酌.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目