题目内容

【题目】如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动.规定其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).
(1)当t为何值时,PQ∥CD?
(2)当t为何值时,PQ=CD?

【答案】
(1)解:根据题意得:PA=t,CQ=3t,则PD=AD﹣PA=24﹣t.

∵AD∥BC,

即PQ∥CD,

∴当PD=CQ时,四边形PQCD为平行四边形,

即24﹣t=3t,

解得:t=6,

即当t=6时,PQ∥CD


(2)解:若PQ=DC,分两种情况:

①PQ=DC,由(1)可知,t=6,

②PQ≠CC,由QC=PD+2(BC﹣AD),

可得方程:3t=24﹣t+4,

解得:t=7


【解析】(1)由当PQ∥CD时,四边形PQCD为平行四边形,可得方程24﹣t=3t,解此方程即可求得答案;(2)根据PQ=CD,一种情况是:四边形PQCD为平行四边形,可得方程24﹣t=3t,一种情况是:四边形PQCD为等腰梯形,可求得当QC﹣PD=QC﹣EF=QF+EC=2CE,即3t﹣(24﹣t)=4时,四边形PQCD为等腰梯形,解此方程即可求得答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网