题目内容
解不等式组:.
照如图所示的操作步骤,若输入x的值为5,则输出的值为 .
某商店经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+800.
(1)该商店每月的利润为W元,写出利润W与销售单价x的函数关系式;
(2)若要使每月的利润为20000元,销售单价应定为多少元?
(3)商店要求销售单价不低于280元,也不高于350元,求该商店每月的最高利润和最低利润分别为多少?
某班派9名同学参加红五月歌咏比赛,他们的身高分别是(单位:厘米):167,159,161,159,163,157,170,159,165.这组数据的众数和中位数分别是( )
A. 159,163 B. 157,161 C. 159,159 D. 159,161
小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速.当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车辆从安康小区站出发所行驶路程y(千米)与行驶时间x(分钟)之间的函数图象如图所示.
(1)求点A的纵坐标m的值;
(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车?并求此时他们距学校站点的路程.
小明要用圆心角为120°,半径是27 cm的扇形纸片(如图)围成一个圆锥形纸帽,做成后这个纸帽的底面直径为____cm.(不计接缝部分,材料不剩余)
如图,在中,是的中点,将沿翻折得到,连接,则线段的长等于( )
A. 2 B. C. D.
已知关于的分式方程无解,则的值是________.
如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,-2).
(1)求△AHO的周长;
(2)求该反比例函数和一次函数的解析式.
【答案】(1)△AHO的周长为12;(2) 反比例函数的解析式为y=,一次函数的解析式为y=-x+1.
【解析】试题分析: (1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;
(2)根据待定系数法,可得函数解析式.
试题解析:(1)由OH=3,tan∠AOH=,得
AH=4.即A(-4,3).
由勾股定理,得
AO==5,
△AHO的周长=AO+AH+OH=3+4+5=12;
(2)将A点坐标代入y=(k≠0),得
k=-4×3=-12,
反比例函数的解析式为y=;
当y=-2时,-2=,解得x=6,即B(6,-2).
将A、B点坐标代入y=ax+b,得
,
解得,
一次函数的解析式为y=-x+1.
考点:反比例函数与一次函数的交点问题.
【题型】解答题【结束】21
如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.
(1)求证:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.