题目内容

(1)如图①,已知弧AB,用尺规作图,作出弧AB的圆心P;
(2)如图②,若弧AB半径PA为18,圆心角为120°,半径为2的⊙O,从弧AB的一个端点A(切点)开始先在外侧滚动到另一个端点B(切点),再旋转到内侧继续滚动,最后转回到初始位置,⊙O自转多少周?
分析:(1)连接AB,任意作一弦AC,然后分别作弦AB、AC的垂直平分线,相交于一点,则这点即为所求作的弧AB的圆心P;
(2)根据弧长计算公式求出弧AB的长度,然后求出⊙O在弧AB上滚动的周数,再根据⊙O在点B、A处分别旋转180°,正好自转1周,然后解答即可.
解答:解:(1)如图所示,点P即为所求作的弧AB的圆心;

(2)弧AB的长=
120•π•18
180
=12π,
⊙O的周长=2πr=2π×2=4π,
∴⊙O滚动的长度为2×12π=24π,
滚动过程中自转周数=24π÷4π=6,
又⊙O在点B处由外侧转到内侧自转180°,在点A处由内侧转到外侧自转180°,正好等于1周,
6+1=7,
所以最后转回到初始位置,⊙O自转7周.
点评:本题考查了弧的圆心的作法,根据垂径定理,作弧上的任意两弦的垂直平分线,交点即为所求作的圆心.
练习册系列答案
相关题目
唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题--将军饮马问题:
如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?
做法如下:如图1,从B出发向河岸引垂线,垂足为D,在AD的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.
(1)观察发现
再如图2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为
2
3
2
3

(2)实践运用
如图3,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+AP的最小值.
(3)拓展迁移
如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
①求这条抛物线所对应的函数关系式;
②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网