题目内容

如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O顺时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;
(2)将图1中的三角板绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为
 
秒(直接写出结果);
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.
精英家教网
分析:(1)由角的平分线的定义和等角的余角相等求解;
(2)由∠BOC=120°可得∠AOC=60°,则∠AON=30°或∠NOR=30°,即顺时针旋转300°或120°时ON平分∠AOC,据此求解;
(3)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°-∠AON、∠NOC=60°-∠AON,然后作差即可.
解答:解:(1)已知∠AOC=60°,
∴∠BOC=120°,
又OM平分∠BOC,
∠COM=
1
2
∠BOC=60°,
∴∠CON=∠COM+90°=150°;

(2)延长NO,
∵∠BOC=120°
∴∠AOC=60°,
当直线ON恰好平分锐角∠AOC,
∴∠AOD=∠COD=30°,
即顺时针旋转300°时NO延长线平分∠AOC,
由题意得,10t=300°
∴t=30,
当NO平分∠AOC,
∴∠NOR=30°,精英家教网
即顺时针旋转120°时NO平分∠AOC,
∴10t=120°,
∴t=12,
∴t=12或30;

(3)∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°-∠AON、∠NOC=60°-∠AON,
∴∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°,
所以∠AOM与∠NOC之间的数量关系为:∠AOM-∠NOC=30°.
点评:此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网