题目内容
某校为了发展校园足球运动,组建了校足球队,队员年龄分布如图所示,则这些队员年龄的众数是_____.
如图,在一笔直的沿湖道路上有A、B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏东15°的方向,AB=4km.
(1)求观光岛屿C与码头A之间的距离(即AC的长);
(2)游客小明准备从观光岛屿C乘船沿湖回到码头A或沿CB回到码头B,若开往码头A、B的游船速度相同,设开往码头A、B所用的时间分别是t1、t2,求的值.(结果保留根号)
如图将矩形ABCD沿对角线BD折叠,使C落在C′处,BC′交AD于点E,则下到结论不一定成立的是( )
A. AD=BC′ B. ∠EBD=∠EDB C. △ABE∽△CBD D. sin∠ABE=
某工厂封装圆珠笔的箱子,每箱只装2000支,在一次封装时,误把一些已做标记的不合格的圆珠笔也装入箱里,若随机拿出100支圆珠笔,共做15次试验,100支中不合格的圆珠笔的平均数是5,你能估计箱子里混入多少不合格的圆珠笔吗?若每支合格圆珠笔的利润为0.50元,而发现不合格品要退货并每支赔偿商店1.00元,你能根据你的估计推算出这箱圆珠笔是亏损还是赢利?亏损,损失多少元?赢利,利润是多少?
计算:(﹣1)2018+(﹣)﹣2﹣|2﹣ |+4sin60°;
如图,两建筑物的水平距离为a米,从A点测得D点的俯角为α,测得C点的俯角为β,则较低建筑物的高为( )
A. a米 B. acotα米 C. acotβ米 D. a(tanβ﹣tanα)米
如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.
关于x的一元二次方程有实数根,则m的取值范围是( )
A. B.
C.且 D.且
随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).