题目内容
(2012•东营)某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是
30
30
cm.分析:当圆柱形饮水桶的底面半径最大时,圆外接于△ABC;连接外心与B点,可通过勾股定理即可求出圆的半径.
解答:解:连接OB,如图,
当⊙O为△ABC的外接圆时圆柱形饮水桶的底面半径的最大.
∵AD垂直平分BC,AD=BC=48cm,
∴O点在AD上,BD=24cm;
在Rt△0BD中,设半径为r,则OB=r,OD=48-r,
∴r2=(48-r)2+242,解得r=30.
即圆柱形饮水桶的底面半径的最大值为30cm.
故答案为:30.
当⊙O为△ABC的外接圆时圆柱形饮水桶的底面半径的最大.
∵AD垂直平分BC,AD=BC=48cm,
∴O点在AD上,BD=24cm;
在Rt△0BD中,设半径为r,则OB=r,OD=48-r,
∴r2=(48-r)2+242,解得r=30.
即圆柱形饮水桶的底面半径的最大值为30cm.
故答案为:30.
点评:此题考查把实物图转化为几何图形的能力以及勾股定理,垂径定理的讨论和勾股定理.
练习册系列答案
相关题目