题目内容
【题目】(1)如图(1)所示,已知在△ABC中,O为∠ABC和∠ACB的平分线BO,CO的交点.试猜想∠BOC和∠A的关系,并说明理由.
(2)如图(2)所示,若O为∠ABC的平分线BO和∠ACE的平分线CO的交点,则∠BOC与∠A的关系又该怎样?为什么?
【答案】(1)∠BOC=∠A+90°;理由见解析;(2)∠BOC=∠A;理由见解析
【解析】
试题分析:(1)、根据三角形内角和定理得出∠A+∠ABC+∠ACB=180°,∠BOC+∠OBC+∠OCB=180°,根据角平分线的性质得出∠ABC=2∠OBC,∠ACB=2∠OCB,然后得出∠BOC+∠ABC+∠ACB=180°,最后得出结论;(2)、根据外角的性质得出∠A+∠ABC=∠ACE,∠OBC+∠BOC=∠OCE,然后根据角平分线的性质得出∠ABC=2∠OBC,∠ACE=2∠OCE,最后根据∠BOC=∠OCE-∠OBC得出答案.
试题解析:(1)、∠BOC=∠A+90°.
在△ABC中,∠A+∠ABC+∠ACB=180°,在△BOC中,∠BOC+∠OBC+∠OCB=180°,
又∵ BO,CO分别是∠ABC,∠ACB的平分线, ∴ ∠ABC=2∠OBC,∠ACB=2∠OCB.
∴ ∠BOC+∠ABC+∠ACB=180°.
∴ ∠BOC=180°﹣(∠ABC+∠ACB)=180°-(180°-∠A)= 90°+∠A.
(2)、∠BOC=∠A.
∵ ∠A+∠ABC=∠ACE,∠OBC+∠BOC=∠OCE, ∴ ∠A=∠ACE-∠ABC, ∠BOC=∠OCE-∠OBC
又∵ BO,CO分别是∠ABC和∠ACE的平分线, ∴ ∠ABC=2∠OBC,∠ACE=2∠OCE.
∴∠BOC=∠OCE-∠OBC=∠ACE-∠ABC=(∠ACE-∠ABC)=∠A.