题目内容

【题目】如图,点P是正方形ABCD的对角线BD上的一点,连接PA,PC.

(1)证明:∠PAB=∠PCB;

(2)在BC上截取一点E,连接PE,使得PE=PC,连接AE,判断△PAE的形状,并说明理由.

【答案】(1)证明见解析;(2)△PAE是等腰直角三角形. 理由见解析.

【解析】(1)根据正方形的性质得AB=CB,∠ABD=∠CBD,又知BP=BP,即可证△ABP≌△CBP,于是得到PA=PC,∠PAB=∠PCB;(2)根据PE=PC得到∠PEC=∠PCB,进而求出∠PAB=∠PEC,由E是BC上一点,∠PEB+∠PEC=180°求得∠PAB+∠PEB=180°,进而求出∠APE=90°,再根据PA=PC,PE=PC,求出PA=PE,于是证得△PAE是等腰直角三角形.

解:(1)∵四边形ABCD是正方形,

∴BA=BC,∠ABP=∠CBP ,

又∵BP=BP,

∴△ABP≌△CBP,

∴∠PAB=∠PCB,

(2)△PAE是等腰直角三角形. 理由如下:

∵PE=PC,

∴∠PEC=∠PCB,

由(1)∠PAB=∠PCB,

∴∠PAB=∠PEC ,

∵∠PEC+∠PEB=180°,

∴∠PAB+∠PEB=18,

∵∠PAB+∠ABE+∠PEB+∠APE=360°,

∠ABE=90°,

∴∠APE=90°,

由(1)△ABP≌△CBP得PA=PC,

∵PE=PC,

∴PA= PE,

∴△PAE是等腰直角三角形.

“点睛”本题主要考查正方形的性质和全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握正方形的性质和全等三角形的判定定理,此题难度不大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网