题目内容
【题目】如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,使点B落在点E处,连结DE,若DE:AC=3:5,则的值为___.
【答案】
【解析】根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DAC=∠BCA,从而得到∠EAC=∠DAC,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形对应边成比例求出,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.
解:∵矩形沿直线AC折叠,点B落在点E处,
∴∠BAC=∠EAC,AE=AB=CD,
∵矩形ABCD的对边AB∥CD,
∴∠DCA=∠BAC,
∴∠EAC=∠DCA,
设AE与CD相交于F,则AF=CF,
∴AE-AF=CD-CF,
即DF=EF,
∴,
又∵∠AFC=∠EFD,
∴△ACF∽△EDF,
∴,
设DF=3x,FC=5x,则AF=5x,
在Rt△ADF中,AD===4x,
又∵AB=CD=DF+FC=3x+5x=8x,
∴.
“点睛”本题考查了矩形的性质,平行线的性质,等角对等边的性质,相似三角形的判定与性质,勾股定理的应用,综合性较强,但难度不大,熟记各性质是解题的关键.
练习册系列答案
相关题目