题目内容
在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为_____
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:(1)b2﹣4ac>0;(2)abc>0;(3)8a+c>0;(4)6a+3b+c>0,其中正确的结论的个数是( )
A. 4 B. 3 C. 2 D. 1
如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若( ,y1)、(,y2)是抛物线上的两点,则y1<y2;⑤>m(am+b)(其中m≠).其中说法正确的是_____
y=3(x﹣1)2+2与y轴的交点坐标是( )
A. (0,2) B. (0,5) C. (2,0) D. (5,0)
如图,矩形的对角线、相交于点,点、在上,.
(1)求证:;
(2)若,,求的长度.
下列命题正确的是( )
A. 任意两个矩形一定相似 B. 相似图形就是位似图形
C. 如果点是线段的黄金分割点,那么 D. 有一个锐角相等的两个直角三角形相似
如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y= x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为( )
A. ① B. ② C. ③ D. ④
在直角坐标系中,点M(5,7)关于原点O对称的点N的坐标是(x,y),则x+y=______.