题目内容
【题目】如图,D是等边△ABC边AB上的一点,且AD=1,BD=2,现将△ABC折叠,使点C与D重合,折痕EF,点E、F分别在AC和BC上,若BF=1.2,则CE=( )
A. B. C. D.
【答案】B
【解析】
试题分析:先求得AC=AB=3,由翻折的性质可知:EC=ED,然后证明△AED∽△BDF,利用相似三角形的性质可求得AE=,然后可求得CE的长.
解:∵△ABC为等边三角形,
∴AC=AB=3,∠A=∠B=∠C=60°.
由翻折的性质可知:∠EDF=60°.
∴∠FDB+∠EDA=120°.
∵∠EDA+∠AED=120°,
∴∠AED=∠FDB.
∴△AED∽△BDF.
∴,即.
解得:AE=.
CE=3﹣AE=3﹣=.
故选:B.
练习册系列答案
相关题目