题目内容
【题目】如图,已知∠AOB=90°,点A绕点O顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1 , AA2 , AA3…,依此作法,则∠AAnAn+1等于度.(用含n的代数式表示,n为正整数)
【答案】180﹣
【解析】解:∵点A绕点O顺时针旋转后的对应点A1落在射线OB上,
∴OA=OA1,
∴∠AA1O= ,
∵点A绕点A1顺时针旋转后的对应点A2落在射线OB上,
∴A1A=A1A2,
∴∠AA2A1= ∠AA1O= ,
∵点A绕点A2顺时针旋转后的对应点A3落在射线OB上,
∴A2A=A2A3,
∴∠AA3A2= ∠AA2A1= ,
∴∠AAnAn﹣1= ,
∴∠AAnAn+1=180°﹣ .
所以答案是:180﹣ .
【考点精析】解答此题的关键在于理解等腰三角形的性质的相关知识,掌握等腰三角形的两个底角相等(简称:等边对等角),以及对旋转的性质的理解,了解①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.
【题目】某中学为了科学建设“学生健康成长工程”,随机抽取了部分学生家庭对其家长进行了主题“周末孩子在家您关心了吗?”的调查问卷,将收回的调查问卷进行了分析整理,得到了如下的样本统计图表和扇形统计图:
代号 | 情况分类 | 家庭数 |
A | 带孩子玩且关心其作业完成情况 | 8 |
B | 只关心其作业完成情况 | m |
C | 只带孩子玩 | 4 |
D | 既不带孩子玩也不关心其作业完成情况 | n |
(1)求m,n的值;
(2)该校学生家庭总数为500,学校决定按比例在B、C、D类家庭中抽取家长组成培训班,其比例为B类20%,C、D类各取60%,请你估计该培训班的家庭数;
(3)若在C类家庭中只有一个是城镇家庭,其余是农村家庭,请用列举法求出C类中随机抽出2个家庭进行深度家访,其中有一个是城镇家庭的概率.