题目内容
【题目】如图,直线AB∥CD,∠B=∠D=120°,E,F在AB上,且∠1=∠2,∠3=∠4
(1)求证:AD∥BC;
(2)求∠ACE的度数;
(3)若平行移动AD,那么∠CAF:∠CFE的值是否发生变化?若变化,找出变化规律或求出其变化范围;若不变,求出这个比值.
【答案】
(1)解:∵AB∥CD,
∴∠B+∠BCD=180°,
∵∠B=∠D=120°,
∴∠BCD=60°,且∠D+∠BCD=180°,
∴AD∥BC
(2)解:∵∠1=∠2,∠3=∠4,
∴∠ACE=∠2+∠3= (∠1+∠2)+ (∠3+∠4)= (∠1+∠2+∠3+∠4)= ∠BCD= ×60°=30°
(3)解:不变.
∵AB∥CD,
∴∠CAF=∠1,∠CFE=∠1+∠2,
∴∠CAF:∠CFE=∠1:(∠1+∠2)=∠1:2∠1= ,
即这两个角的比值是
【解析】(1)根据平行线的性质推出∠B+∠BCD=180°,由∠B=∠D证得∠D+∠BCD=180°,根据平行线的判定即可证得结论;(2)根据平行线的性质推出∠B+∠BCD=180°,由∠B=∠D=120°得到∠BCD=60°,由∠1=∠2,∠3=∠4得到∠ACE= (∠1+∠2+∠3+∠4)= ∠BCD,代入数值即可求得结论;(3)根据平行线的性质证得∠CAF=∠1,∠CFE=∠1+∠2=2∠1,代入即可求出结论.
【考点精析】解答此题的关键在于理解垂线的性质的相关知识,掌握垂线的性质:1、过一点有且只有一条直线与己知直线垂直.2、垂线段最短,以及对平行线的判定的理解,了解同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.
练习册系列答案
相关题目