题目内容
用配方法解方程x2﹣x﹣1=0时,应将其变形为( )
A. (x﹣)2= B. (x+)2=
C. (x﹣)2=0 D. (x﹣)2=
的值是( )
A. ±16 B. ±4 C. 16 D. ?16
如果与是同类项,那么____________.
解方程:x2﹣4=﹣3x﹣6.
如图,△ABC的三个顶点分别为A(1,2),B(1,3),C(3,1).若反比例函数在第一象限内的图象与△ABC有公共点,则k的取值范围是________.
如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点 P 叫做△ABC 的费马点.
(1)如果点 P 为锐角△ABC 的费马点,且∠ABC=60°.
①求证:△ABP∽△BCP;
②若 PA=3,PC=4,则 PB= .
(2)已知锐角△ABC,分别以 AB、AC 为边向外作正△ABE 和正△ACD,CE 和 BD相交于 P 点.如图(2)
①求∠CPD 的度数;
②求证:P 点为△ABC 的费马点.
计算:
(1)|1﹣|﹣+(2015﹣π)0
(2)()+(2+)(2﹣)
阅读材料,用配方法求最值.
已知a,b为非负实数,∵a+b﹣2=()2+()2﹣2=(﹣)2≥0,∴a+b≥2,当且仅当“a=b”时,等号成立.示例:当x>0时,求y=x++1的最小值;
【解析】y=(x+)+1>2=3,当x=,即x=1时,y的最小值为3.
(1)探究:当x>0时,求y=的最小值;
(2)问题解决:随着人们生活水平的提高,汽车已成为越来越多家庭的交通工具,假设某种汽车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元,n年的保养,维修费用总和为万元,问这种汽车使用多少年报废最合算(即使用多少年的年平均费用最少,年平均费用=所有费用:年数n)?最少年平均费用为多少万元?
如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为( )
A. 5 B. 6 C. 8 D. 10