题目内容
【题目】在平面直角坐标系中,已知抛物线(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
【答案】(1);(2)(i)M1(4,﹣1),M2(﹣2,﹣7),M3(,),M4(,);(ii).
【解析】
试题分析:(1)先求出点B的坐标,然后利用待定系数法求出抛物线的函数表达式;
(2)(i)首先求出直线AC的解析式和线段PQ的长度,作为后续计算的基础.
若△MPQ为等腰直角三角形,则可分为以下两种情况:
①当PQ为直角边时:点M到PQ的距离为.此时,将直线AC向右平移4个单位后所得直线(y=x﹣5)与抛物线的交点,即为所求之M点;
②当PQ为斜边时:点M到PQ的距离为.此时,将直线AC向右平移2个单位后所得直线(y=x﹣3)与抛物线的交点,即为所求之M点.
(ii)由(i)可知,PQ=为定值,因此当NP+BQ取最小值时,有最大值.
如答图2所示,作点B关于直线AC的对称点B′,由分析可知,当B′、Q、F(AB中点)三点共线时,NP+BQ最小,最小值为线段B′F的长度.
试题解析:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)
∴点B的坐标为(4,﹣1).
∵抛物线过A(0,﹣1),B(4,﹣1)两点,∴,解得:b=2,c=﹣1,∴抛物线的函数表达式为:.
(2)(i)
∵A(0,1),C(4,3),∴lAC:y=x﹣1,∵抛物线顶点P在直线AC上,设P(t,t﹣1),∴抛物线表达式:,∴lAC与抛物线的交点Q(t﹣2,t﹣3),∵一M、P、Q三点为顶点的三角形是等腰直角三角形,P(t,t﹣1):
①当M为直角顶点时,M(t,t﹣3),,∴t=,∴M1(,),M2(,);
②当Q为直角顶点时,点M可视为点P绕点Q顺时针旋转90°而成,将点Q(t﹣2,t﹣3)平移至原点Q′(0,0),则点P平移后P′(2,2),将点P′绕原点顺时针旋转90°,则点M′(2,﹣2),将Q′(0,0)平移至点Q(t﹣2,t﹣3),则点M′平移后即为点M(t,t﹣5),∴,∴t1=4,t2=﹣2,∴M1(4,﹣1),M2(﹣2,﹣7);
③当P为直角顶点时,同理可得M1(4,﹣1),M2(﹣2,﹣7),综上所述,所有符合条件的点M的坐标为:
M1(4,﹣1),M2(﹣2,﹣7),M3(,),M4(,).
(ii)存在最大值.理由如下:
由(i)知PQ=为定值,则当NP+BQ取最小值时,有最大值.
如答图2,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.
连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,∴四边形PQFN为平行四边形,∴NP=FQ,∴NP+BQ=FQ+B′Q≥FB′==,∴当B′、Q、F三点共线时,NP+BQ最小,最小值为,∴的最大值为=.