题目内容
计算:的结果为__________
已知函数y=,则自变量x的取值范围是( )
A. ﹣1<x<1 B. x≥﹣1且x≠1 C. x≥﹣1 D. x≠1
观察下面由正整数组成的数阵:
照此规律,按从上到下、从左到右的顺序,第18行的第18个数是_____.
已知抛物线y=a(x2-cx-2c2)(a>0)交x轴于A、B两点(点A在点B的左侧),交y轴于点C.
(1) 取A(-1,0),则点B的坐标为___________;
(2) 若A(-1,0),a=1,点P为第一象限的抛物线,以P为圆心,为半径的圆恰好与AC相切,求P点坐标;
(3) 如图,点R(0,n)在y轴负半轴上,直线RB交抛物线于另一点D,直线RA交抛物线于E.若DR=DB,EF⊥y轴于F,求的值.
解方程:5x-1=3(x-1)
如图,为估算学校的旗杆的高度,身高米的小红同学沿着旗杆在地面的影子由向走去,当她走到点处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得,,则旗杆的高度是( )
A. 6.4m B. 7m C. 8m D. 9m
将△ABC的边AB绕点A顺时针旋转α得到AB′,边AC绕点A逆时针旋转β得到AC′,α+β=180°.连接B′C′,作△AB′C′的中线AD.
(初步感知)
(1)如图①,当∠BAC=90°,BC=4时,AD的长为______;
(探索证明)
(2)如图②,△ABC为任意三角形时,猜想AD与BC的数量关系,并证明;
(应用延伸)
(3)如图③,已知等腰△ACB,AC=BC=m,延长AC到D,延长CB到E,使CD=CE=n,将△CED绕C顺时针旋转一周得到△CE′D′,连接BE′、AD′,若∠CBE′=90°,求AD′的长度(用含m、n的代数式表示).
方程x2=2x的根是_________.
如图,在3×3的正方形网格中,每个小正方形的边长均为1,△ABC的顶点均在格点上.分别在图①、图②中完成下列画图.要求:仅用无刻度的直尺,且保留必要的画图痕迹.
(1)在图①中的线段AB上找到一点M,作直线CM,使直线CM将△ABC的面积平分.
(2)在图②中的线段AB上找到一点N,作直线CN,使直线CN将△ABC的面积分成1:2的两部分.