题目内容
【题目】如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.
(1)求C点的坐标;
(2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;
(3)如图1点M(1,﹣1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM﹣FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由
【答案】(1)(﹣6,﹣2);(2)见解析;(3)见解析.
【解析】
(1)证明△MAC≌△OBA(AAS),根据三角形全等时对应边相等可得C的坐标;
(2)根据平移规律可得三个H点的坐标;
(3)如图3,作点M(1,-1)关于y轴的对点M'(-1,-1),连接CF1、MF1,由于|FM-FC|≤CM,当C、M'、F三点共线时取等号,连接CM',与y轴交于点F即为所求,根据直线解析式,令x=0可得与y轴的交点F的坐标.
解:(1)如图1,过C作CM⊥x轴于M点,
∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,
则∠MAC=∠OBA,
在△MAC和△OBA中,
,
∴△MAC≌△OBA(AAS),
∴CM=OA=2,MA=OB=4,
∴OM=OA+AM=2+4=6,
∴点C的坐标为(﹣6,﹣2)
(2)答:如图2,存在三个H点,
∵A(﹣2,0),B(0,﹣4),C(﹣6,﹣2),
∴根据B到A的平移规律可得C到H1的平移规律,则H1(﹣8,2),
同理得H2(﹣4,﹣6)、H3(4,﹣2)
(3)答:存在,F(0,﹣),
如图3,作点M(1,﹣1)关于y轴的对点M'(﹣1,﹣1),
设y轴上存在一点F1,连接CF1、M'F1,由于|FM﹣FC|≤CM',
当C、M'、F三点共线时取等号,
连接CM',与y轴交于点F即为所求,
设CM'的解析式为:y=kx+b,
把C(﹣6,﹣2)、M'(﹣1,﹣1)代入得,,
解得:,
∴,
当x=0时,y=﹣,
∴F(0,﹣).