题目内容
3.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C顺时针旋转.当点D恰好落在AB边上时.
①线段DE与AC的位置关系是DE∥AC.(不需证明)
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2,证明你的结论;
(2)猜想论证
当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.
分析 (1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行进行解答;
②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=$\frac{1}{2}$AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;
(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明.
解答 解:(1)①DE∥AC,
理由如下:如图2,∵△DEC绕点C旋转点D恰好落在AB边上,
∴AC=CD,
∵∠BAC=90°-∠B=90°-30°=60°,
∴△ACD是等边三角形,
∴∠ACD=60°,
又∵∠CDE=∠BAC=60°,
∴∠ACD=∠CDE,
∴DE∥AC;
②∵∠B=30°,∠C=90°,
∴CD=AC=$\frac{1}{2}$AB,
∴BD=AD=AC,
根据等边三角形的性质可得,△ACD的边AC、AD上的高相等,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2,
故答案为:①DE∥AC;②S1=S2;
(2)如图3,∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
在△ACN和△DCM中,
$\left\{\begin{array}{l}{∠ACN=∠DCM}\\{∠CMD=∠N=90°}\\{AC=CD}\end{array}\right.$,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2.
点评 本题属于三角形综合题,主要考查了全等三角形的判定与性质,三角形的面积计算公式,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质的综合应用,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键.
A. | 45° | B. | 60° | C. | 65° | D. | 70° |
A. | 5 | B. | -5 | C. | -1 | D. | 7 |