题目内容
【题目】如图,在正方形ABCD中,BD为对角线,点P从A出发,沿射线AB运动,连接PD,过点D作DE⊥PD,交直线BC于点E.
(1)探究发现:
当点P在线段AB上时(如图1),BP+CE=BD;
(2)数学思考:
当点P在线段AB的延长线上时(如图2),猜想线段BP、CE,BD之间满足的关系式,并加以证明;
(3)拓展应用:
若直线PE分别交线段BD、CD于点M、N,PM= ,EN= ,直接写出PD的长.
【答案】
(1)
(2)解:CE﹣BP= BD;
理由:∵△PAD≌△ECD,
∴CE=AP,
∴CE﹣BP=AP﹣BP=AB= BD;
(3)解:①当P在线段AB上时,
如图1所示,在BC上取一点G使得BG=BP,连接MG、NG,
∵△APD≌△CED,
∵AP=CE,PD=ED,
∴△PED是等腰直角三角形,
∴AB=BC=AP+BP=BG+CG,
∴CG=CE,
∴可证△NCG≌△NCE,
∴NG=NE,∠NGC=∠NEC,
∵∠PBM=∠GBM=45°,BP=BG,BM=BM,
∴△BPM≌△BGM
∴PM=GM,∠MGB=∠MPB,
又∠NEC+∠MPB=90°,
∴∠NGC+∠MGB=90°,
∴∠MGN=90°,
∴MN= =2 ,
∴PE=PM+MN+EN= +2 + =3 + ,
∴PD= PE=3+ ;
②当P在AB延长线上时,
如图2所示,延长CB至G,使得CG=CE,连接MG、NG,
∵AP=CE,
∴CE﹣BC=CG﹣BC=AP﹣AB=BP=BG,
同①可证△△BMG≌△BMP,△CNG≌△CNE,
∴PM=GM,GN=EN,∠BGM=∠BPM=90°+∠CEN=90°+CGN,
∴∠CGN=∠BGM﹣90°=∠BGM﹣∠MGN,
∴∠MGN=90°,
∴MN= =2 ,
∴PN=MN﹣PM=2 ﹣ = ,
∴PE=PN+EN= + ,
∴PD= PE=1+ ,
∴PD的长为3+ 或1+ .
【解析】证明:(1)∵四边形ABCD是正方形,
∴∠A=∠ADC=∠BCD=∠DCE=90°,AD=CD,
∵DE⊥PD,
∴∠ADC=∠PDE=90°,
∴∠ADP=90°﹣∠PDC=∠CDE,
在△PAD与△ECD中, ,
∴△PAD≌△ECD
∴AP=CE,
∴BP+CE=BP+AP=AB= BD;
所以答案是: ;
【考点精析】根据题目的已知条件,利用正方形的性质的相关知识可以得到问题的答案,需要掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.