题目内容
在圆内接四边形ABCD中,∠B=2∠D,则∠B=_______.
在下列语句中表述正确的是( )
A. 延长直线AB B. 延长射线AB
C. 作直线AB=BC D. 延长线段AB到C
若关于x的一元二次方程x2+2x﹣m=0有两个相等的实数根,则m的值为_____.
如图,已知是的外接圆,,是劣弧上的点(不与点、重合),延长至.
求证:的延长线平分;
若,中边上的高为,求的面积.
有一长、宽分别为,的矩形,以为圆心作圆,若、、三点中至少有一点在圆内,且至少有一点在圆外,则的半径的取值范围是________.
已知⊙O的半径为10,P为⊙O内一点,且OP=6,则过P点,且长度为整数的弦有( )
A. 5条 B. 6条 C. 8条 D. 10条
现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:
(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数;
(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.
如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是 ____________
几何模型:
条件:如图1,A、B是直线同旁的两个定点.
问题:在直线上确定一点P,使PA+PB的值最小.
方法:作点A关于直线的对称点A′,连接A′B交于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图2,已知平面直角坐标系中两定点A(0,-1),B(2,-1),P为x轴上一动点, 则当PA+PB的值最小时,点P的横坐标是______,此时PA+PB的最小值是______;
(2)如图3,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.由正方形对称性可知,B与D关于直线AC对称,连接BD,则PB+PE的最小值是______;
(3)如图4,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的最小值为 ;
(4)如图5,在菱形ABCD中,AB=8,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是_______________.